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N. L. Bonavito 


ABSTRACT 

In order to retain separability in the Vinti theory of earth satellite motion 

when a non-conservative force such as air drag is considered, a set of varia­

tional equations for the orbital elements are introduced, and e q r e s s e d  as func­

tiuns of the transverse, rrzdial, anc! normal components of the nonconserszttlvo 

forces acting on the system. In this approach, the Hamiltonian is preserved in 

form, and remains the tstal energy, but the initlal or boundary codi t ions a:id 

hence the Jacobi constants of the motion advance with time through the varia­

tional equations. In particular, the atmospheric density profile is written as a 

'fitted' elcponential function of the eccentric anomaly, which adheres to tabular 

data at all allftudes and sirn~iltaneouslyreduces the variational equations to 

indefinite integrals with clcsed form evaluations, whose limits a r e  in terms of 

the eccentric anomaly. The values of the limits for any arbitrary t ime interval 

are obtained from the Viuti program. 

Results of this technique for the case of the intense air drag satellites San 

Marco-2 and A i r  Force Cmonball  are given. These results indicate that the 

satellite ephemerides produced by this theory in conjunctioii with the Vjnti pro­

gram are 9f very high accuracy. In additioi, since the progrcun is entirely 

amlytic, several months of ephemerides can be obtained within a few seconds of 

computer time. 



I t ’  
! 

CONTENTS 

A B S T R A C T . . . . . . . . . . . . . . .  . . . . . . . .  ; ................ 

INTRODUCTION .................................... 

I. STATEMENT OF THE PROBLEM. .................... 

11. ‘AERODYNAMIC DRAG VARIATIONAL EQUATIONS. . . . . . . . .  

ID. ATMOSPHEFUC DENSITY REPRESENTATION ............ 

IV. SOLUTION OF VARIATIONAL EQUATTOVS .............. 

V. 	 . RESW?,TTS. .................................... 

ACKNOWLEDGEMENTS .............................. 

REFCIEFl?CES.. ................................... 


3 


4 

9 

13 

21 

29 

35 

36 


47 




-- 

3' 

INTRODIJ CTIOX 

Vinti (Refercnce 1)has shown that if a satellite orbit is described by means 

of osculating Jacobi a ' s  and , G ' s  of a separable problem, then a perturbing 

force F makes them vsry according to  

Here F is the position vector of the satellite and, is any perturbing force, 

conservative or lion-conservative. If F is the force of air drag, the interaction 

of drag with oblateness makes it desirable to obtain variations t o  the order 

drag x J, ,where is the coefficient of the second zonal harmonic of the 

Earth's gravitational potential. The physical reason for carrying these deriva­

tives through order ..I2 is the strong variation of drag with perigee height. In 

the present paper, we have been able to account for this effect without iritro­

ducing the Jz t e r m s  into 27,GPKand zY/aa,. The logic +hind our approach 

requires a rathcr careful exposition which we shall  go into in detail in Section I. 

The essence of the method is that for a given t ime interval, one always does 

both a drag free calculation, and an oblateness free calculation with drag, and 

that these two calculations are done in a self-consistcnt iterative manner such 

that the mean orbital elements never go far rrstray. The appropriate criterion, 

to  make s u r e  that the drag-oblateness interaction is being properly accounted 

for, is that the perigee height corresponding to initial and final orbital elements 

of a given interval shall not change by more than some predetermined amount. 

The complexity of those papers which attempt to handle the oblateness­

drag interaction in a straight forward manner (References 2, 3) illustrates the 

desirability of finding a new approach. Th?L Is tho purpose of this paper. 

I 


I 
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I. STATEMENT OF TH.E PROBLEM . ' 

In this paper we consider the motion of an artificial Earth satellite in the 

presence of air drag and the Earth's gravitational potential. l n  contrast to the 

classical methods of numerical integration, our approach will be to  present a 

quadrature algorithm employing analytical expressions for the variation of 
. i 


orbital elements produced by air drag. These expressions a r e  well-defined 


over expanded subintervals OI the sohtion, and produce accurate agreement 1
! 


with profiles of tabular density. This procedure then allows a flexibility in the 


selection of end points of tb-e subintervals, which in turn insures :iminimum 


e r r o r  bsund on the  recltiired analytical function. For mnvenience we shall 


henceforth refer to  the  algorithm a8 the BMW (Bonavito-Mistretta-Watson) 


aerodynamic method. In this meihod t�ieeffect of oblateness i3 accounted for ; 

by the Vinti  Spheroidal Theory (Reference 4) .  The chmges due to atmospheric 


resistance for a ncn-rotating sphere are accounted for by the solutions of t h e  


variational equations without oblateness (Reference 5). 

Nor;nally, one would wish to  represent the vzriation ofatmospheric density 

by an exponential whose power is a fimction of the difference between the satel-

lite height and the altitude at a predetermined density (Reference 6). Siich a 

representation is uscally valid only in a, neighborhocd of this boundary value. 

The neighborhood o r  region over which this density representation is in agree- r f 3
! 

msnt with tabular data such as provided by thz U. S. Standard Atmosphere Sup-

plemcnts,1966, (Reference 7). is one in which the density scale height is observed 

to vary in an approxfmate linear fauhion. Throughout our calculations a set of 

such regions is chosen to meet this requirement. In addition, the initial or 

hunda-v value of the atmospheric density for each of these regions i s  also 

. . . . . . _  
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supplied by the Supplements. Such a representation for atmospheric density 

tvouId,except under special conditions, exclude closed fcrm integration of the 

variational equations. To avoid this difficulty, we approximate t h e  atmospheric 

density variation by an expression which is made to adhere closely to  the 

numerical values of the aforementioned model. By adjusting or  advancing 

boundary conditions over several selected arcs or  layers of atmospheric density, 

we produce a profile that closely agrees with the tabulated data for all heights. 

The degree to  which ou&*results compare with tabu!ar values (Spring-Fall model, 

1100°K exospheric temperature) from the U. S. Standard Atmospheric Supple­

ments, 1.966, i s  shown in Table I. Behireen t h e  Jieights of 205 kilometers and 650 

kilometers, the discrepancy is less than two percent. From symmetry consider­

ations, these sets of boundary ccnditions for one representation can be deter­

mined during the  first half revolution of an orbit. These density variation pro­

files then are held fixed until such time as the perigee height changes by 6ome 

predetermined arnourit. .4t this point the boundargr-eonditions are redetermined 

over the first half revolution away from perigee, corresponding to  a chosen 

epoch. This again produces a total density profile that is in close agreement 

with the values from the Supplement tables. Experience indicates that given a 

criterion of one kilometer change in perigee, this redetermiriation is not neces­

s a r y  for nearly two months in  the cases of the San Marco-2 and Cannonball 

satellites, but becomes more frequent near the end of the lifetime of each 

spxcex-aft. 

In our final expressions for these variations, rotation of the atmosphere 

is accounted for while an oblate otmoxphere is considered in a pzrtial fashion 

by including the oblateness naranieter in the exponential term of the demity 

. .  .. c. . . .  
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variation. Although the variational equations do  not contain the effects of oblate­

ness explicitly, the interaction between oblateness and drag i s  accounted for 

iniplicitly during the computational procedure in the following manner (See 

Figure 5). 

1. From the initial conditions calculate the lzsak elecients of the Vinti 

Spheroidal Theory corresponding to that eopch. 

2. With these, together with tabular data or. a i r  density, obtain the density 

variation profiles and corresponding values for cllanges in the elements arising 

from air drag for those altitudes during the first half revolution past perigee 

and beyond epoch, corresponding t o  these density profiles. 

3. For any desired time interval, calculxte using oblateness only (without 

drag) 7 and and the value of the eccentric anomaly E, a t  the end of this 

interval from the initial given set of Vinti or Izsak elements. 

4. For this same time interval, calcylate from drag only (without oblateness) 

the total change in the original or given set or Vinti elamenta, using the value, of 

the.eccentric anomaly obtained in step (3)as the upper limit in the analytical 

expressions for these changeo in the elements arising from drag. The total 

change in the elements from epoch to this t ime, produced by drag only,are 

cblained by multiplying the revoiutions to  this point in the orbit by the sum of 

the individual (analytically expressed) corrections or changes to the elements 

obtained in the first half revolution. 

5. Add these changes arising from. drag of step (4) to the epoch values of 

- the Vfntf elements. A . . 

6. FGr the same time interval, repeat step (3)with the new e'ements ob­

tained in step (5). 

c 


i 
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7. Compare the last two values of eccentric anomaly. If their difference is less 

than some arbitrary preassigned small  positive number E ,  then the differeficcs 

between the original noniterated set of elements a i o )  , (i = 1,2,3), and t h e  

iterated set a(n),8(n) approaches a constant. That is, when 

then, 

A.6 = (p(0' - pen)) = C(Pc" - I ) ,  ELn-1)) - constant 

where (n) is the iteration number. Note that the functional representation of 

the variational. equations solution on the right hand side contains the previous 

iterated values of the elements and the eccentric anomaIy,(a("-l) , P ( " - l ) ,  

E("-') 1.U 

8. If the above criterion on the eccentric anomaly upper limit is met, then 

we accept the =in),pia1)as the new Vinti elements t h t  describe the orbit from 

the original epoch to the end of the given time interval. 

9. If the criterion is not met, repeat steps (3)through ( 7 )  always utilizing 

the iterated values of the Vintt elements in the calculation of step (3)utfl  such 

time as 
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In functional terms,  i f  by X we deiiote the elenients of the Vinti Satellite 

Theory and f(2,t) repres'snts the Vinti Spheroidal Method (oblateness only) 

solution which for a given t ime interval yields a value of the eccentric anomaly 

E, correspocding to a time t at the end of that interval, and g E, f(Xst) ] repre­

sents the correction arising from drag p lm the oblateness calculation; then far 

a fixed value of t ime t, the above algorithm is an iterative solution for 2 usfng 

the equation 

r ( x  t) = f (e ,&,  fe,t ) ~ .t )  

in a self-consistent method. Thus,  for a fixed time interval 

This algorithm converges when

1 E:' ;hf)g-l)I < E .  

c 


. 
i 
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Ii. AERODYNAMIC DRAG VARIATIONAL EQUATIONS 

From Sterne (Reference 5) .  the equations for variatioris of the orbital ele­

ments due to air drag and without oblateness are given by 

dM 1 - f?) 
cos v - ") - T (,( 

1 - e 2 : ( 1  	 t $) s i n v  

naena 

H e r e  $ is the argument of lati.tude, r = a(l-ecos E), p = a(1-e 3, and 

n = g1/2a'3I2 ,where p is the product of the gravitatiobal constant and the sum 

of the masses in the two body problem. E and v are the eccentric and true 

anomaly respectively and f is the inclination. Ths  drag perturbing force is 

resolved into the following components: 

R is in the direction of the position vector from the force center to the satellite. 

T is perpendicular to R, lies in the orbital plzae, and i s  positive in the direc­

tim of motion. . . 

I	 . . .  ~ 

.._;* <.. . . . : '  . > . - . .F .  ,,, . .  . , .. . : .  

c . . 

! 

t 

.. .
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W is mutually perpendicular to R and T and completes a right handed set of 


component directions. 


In t e rms  of the eccentric anomaly, these are given by 


Here, us is the angular velocity of rotation of the Earth, P is the atmospheric 


density, A is the projected area of the satellite, m is the mass of the satellite, 


and C, is a drag parameter. S is a parameter related to the orbital inclina­


tion and is given by 


s = sin' i .  (3) 

The velocity of the satellite relative t o  the atmosphere can be written in  vector 

notation as 
-V=T-5,x r. 

-
Neglecting the t e rm of order W: in tho magnitude of V t o  be employed in (Z), 

one obtains the expression given by Sterne to  be 

(1 + e cos  E)-"2 (I - e cos [(I + e cos E) - d(l + c cos E)].y =($)l'* 
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where 

where sgn aJ= +1 o r  -1 according to whether the orbit is direct or retro6Tadc. 

From (3)above we have 

I d S - 2 s i n  i cos i-,d i  
dt  d t  

i or 

- di 
dt  

J 

k. Inserting di/dt from (l),we can then write the variation of the inclination 
i 

parameter as 

r\' d t  G a  V 

Let us now write the right ascension of the ascending node and the argument of 

perigee as P
3 

and p ,  respectively. In addition, the mean anomaly is related 

to the time of perigee passagepl by M = n(t + 4). Differentiating, we have that 

where 

dn =. -.-p 1 f 2 a - s f 2  d".: 
d t  2 d t  

Using the above results, together with (2j, the solutions of the variat3oml qua­

tions due to  air drag without ob!ixteness are given from (1)by 



-- 

d
1,: 

Y 

- d(1 - c cos  E)l2) dE 

A e  = CD* a(1  - e’) JE2p(l1 + e cos  E ) - ’ / ~  - d(1 - e cos E) 
m - c C O S  E (1 + e cos E)1

E1 

x (1 - e cos  cos’ $[(1 + e c o s )  - d(1 - e cos E): dE 

(4) 

48 =--c,-p -1 /2.5/2 w,( 1 - c2)-1/2 p s i n  JJ cos  $1 A 
3 2 m 

x (1 + e cos  E)-’/2 (1 - e C O S  [ ( I  + c C O S  E) - d(1 - e C O S  E)] dE 

x (1 3 e cos (1 - e cos E)-”’ [(l + e cos E) - d(1 - e cos E)] 

+ 2(1 + e cos E)-”* (1 - e cos s i n  E[(1 + e cos E) - d(1 - e cos E)] 

k:. 

. . 
- . . ... . 

I 
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and 

p ( 1 - e cos Ej'I2 (1 t e cos E)- 1 / 2  

m n 
t 

x [(l t e c o s  E) - d ( l  - e c o s  E)! s i n  EdE. 

Here E, 2nd E, are the values of the eccentrj: anomaly at arbitrary times t l  

and t, respectively and the t ime t is usually hken  to be the time cf epoch. t 

The solution of (4) will  be considered in Section IV after describing the form 

of p in Section 111. 

m. ATMQfSPNEFUC DENS,TY REPRESENTATION 
* 

At this point we consider the expression for atmospheric densit.;r variation 

given by King-Hele (Reference 6). An expression hi the atmospheric density 
i: as  a function of the eccentric anomaly is given by 

P 

g. 

T' . 


i.- . wiiere x = ac, Fi 
P 

= density scale height at perigee which in equation (5) ie 

- <  .. .
'-1. '
F. assumed to vary linearly with the perigee height. 

.. . 

i 


i.2 
:. Lot us now write equation (5)in a more general form 80 as to represent 

:;. 
, - the atmospheric density variation over any interval vfithin the orbit in which 
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the boundary conditions are Iinown. A generalization of (5) is desirable ior our 

purposes to insure that the resu.lt;knt analytic atmospheric model rigidly adheres 

to a tabular set of densities at all  altitudes. To obtain this generalization, let 

the subscripts L and U refer t o  a lower and upper point cf an interval respec­

tively. Tinis interval [ E,, E,] is judiciously chosen (by a method discussed 

later in this section) and a.1lo.u~~either 

or 


Letting 

rL = a ( 1  - e cos  Et),  r, = a ( l  - e cos E,,), 
and 

= max(rL, ru),rmin= m i n ( r L ,  Tu), rmaw 

permits p t o  be given by an  expression of the type of equation (5) over the re­

strlcted domain [%, E v] by 

or 

p(E) = pL{l t h(L, U) x2(cos - cos E)21 e x p  , q , < Z I E u  (6) 

where pL and �k are available from density tables, and E, are available 

from the orbit theory (as are rL and r"),and b(L,W) is derhable  from (6)by 

setting ;(E,,,) = pu which y i e l d s  b(L, U) = b(L, U; pL. pu. r,,, Tu. HJ. 

i! 

. . 

I 
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If equation (6) abuvc is scbstituteci into (4) and the resulting expressions 

are expanded in powers of t h e  eccentricity e, this yields terms of the form 

h' 
.. -

sir; E cosm E exp(- (XIIL)( C O S  - C O S  E)) dE . 

where m 2 0 ,  nZ 0, and H, i s  held constant over the range of a subinterval of 

integration and x is held constant over the entire range of integration. For the 

case II = 0, this expression can be evaluated in ternis of Bessel functions for the 

limits ( 0 , ~ ) .The parameter n, howcver, does assume the valrre zero;and, in 

addition, i t  is desirable to  alter the form of the integrand so as to  inscre that 

the expression under the integral sign is integrable over any interval while 

simultaneously maintaining i ts  theoretical phyi;ical content. In short, the vari­

ational equations cannot be solvsd by the  Fundamental Theorem of Calculus 

since a n  antiderivative of sin" E cos" E exp -(x/HL) (cos - cos E)', (n# I), 

is not expressible in t e r m s  of elementary functions. 

To achieve t h i s  purpose let u s  now consider the following: rewrite the 

expression for atmospheric density (5)as 

p ( E )  = p, [I + b(L, U) x2 ( C O S  EL - C O S  E)*] hl(E) cxp[b2(E) -E! 

E , Z E I E ,  (7) 

where b, (E), b, (E) are arbitrary functions of E which will be chosen to pre­

gerve closed form integrability of the variatimal equations (4) while retaining 

near com.plete numerical agreement with the exponential t e rm of King-Hele's 

expression for p (E). 

The selection of the two functions b,(E),b @) between an upper limit of 

integration E, and a lower limit E, will be made in the follov.5ng manner. 

t 

I 

i 

. : 

,
r' 



16 


Consider the interval [Et,E:: subdivided inlo a col lect ion .of n noiioverbpping 


subintervals Xt, (,c = 1, 2, . . .,n), defined by the partitioning 
r' 


E; = xo < XI < ... Xnel  < X" =E?' 

For  any subinterval 14 = [xx-l, x ~ , ],define' 

where  cx;, dk a r e  constants. The determiwtion of c d ,  d,; wil l  be accomplished 

by applying the technique of c lass ica l  weighted least  squares. In th is  manner 

the definition of b , (E)  and b,(E) over the domain [E:, E; 1 are the step functions 

L , ( E )  = c, 

= c2 

= cn 

b2(E) = d, 

= d, 

= dn 

.' .. 
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' f  Consider observational data Yi generated within I#., by repeated evaluation 

of the function 

h(Ei) = cxp:-G(cos - cos E,)] 
; -

where G = x/)t and q,-*L E,  I xx. To define the pseudo-regression situation 

governing our estimation problem, consider the implicitly linear, exponentti1 

model 

relating the independent variable E and the dependent or response variable Y 
-. 

that, unlike the general regression response variable, displays no random vari­
t ability. Hence, the random variables e i  denoting the dispersjon characteristics 

L 

,Y-.a i' of Y, about the theoretical regression line become meaningless in the curve 
1 

fitting analysis. That ifi,the random variables are degenerate in the sense 

that their probability density functions p ( ~ ,) are given by 
Y 

~ ( 6 , ) 
= 1 c I  = B, 
= 0 otherwise 

where B, can be considered a "fitting bias" at E = Ei since 

= Bi Var(ci)  = 0. 

While all practical statistica! properties of the regression analysis become 

lost, the technique is not degraded as a numerical tool for approximating with 
igreat precision complex functional forms over restricted regions with relatively 

simple fnct icns .  

. .  I .  . . .  . . .. _  . . .  .,. . . _ ... I .. . .  . . .  . . , 
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TDdisplay the implicit linear form of (8),we take the natural logarithm of 

both sides of (8) and obtain the equivalent form 
I n Y i  = Inp l  + $ , E i  + l n E i  

or  
t e l  (i = 1, 2. .--,m).Y I  =a;  + j j , ~ ~  

If nonnegative weights w1 ,w z  * . .. * amareavailable and yi a r e  evaluated 

from y; = Ir. h (Ei ) = - G (cos X X - ~- cos Ei ) *  then the well lmown result 

w i y j E i  ­
b, = 1 

m 


i i  
1 

are the values of ,8 1, f l  that minimize tho woig3ted sum of squares 

Thus, b, = exp (b;) and b, are the classical weightsd least squa.res estimated 

of fil ,$, respectively. b 

The se!ection of the mesh point6 over an interval of integration E; ,E:] 

i R  obtained through an automated search approach utilizing t%eweighted leaat 

squares process previously described. This techniq.Je selects subintervals of 

maximum size while retaining a user  selected e r r o r  tolerance between the t rue 

and predicted function. 

Furthermore, i f  one sets E t  = 0 ,  E t  = n, and derives a set o� coefficients 

for the n selected subintervals in the manner previously defined, the fumtions 

! 

f 

I ... . , . .. , . . _  . .  , -. . * . , . .  
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. .  
h(E) andp (E) will have been fitted for a l l  values of E over whkh x has heen 

assumed constar.t.. This is true since h(E) is a periodic function with period 2n 

and in the fundamental period (0 ,  2 n) is symmetrically distributed about the 

axio of symmetry E = n  . 
With the use of more general expression for density ( p ) ,  the variational 

equations (4) integrated between E: and Et where 0 < E*,< E$< n, take on the 

following general functional form 
n-1 

Aqk = i x ” ”  {t j + I  exp ( d i a l  E)) dCk <E) (k = I, 2, ..-,6) 
J 

where dG,(E) = g,(sinE, COS E) dE. Having fitted h(E) from (0- r r ) ,  the inte­

gration of t h e  variational equations bztween any two arbitrary limits E: 2 0, 

E; 5 ET, lakes the general Iunctional form 

. ­1 

.., . 

i 

I 

j 

.. . . _  . ..> 
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where md, (8 = 1, 2, ...,2n), arc nonnegative integers; t j  ,t i ,  d;(j = 1, 2, . .., 

n), (k = n + l., n + 2, ...,2n) are functions of c j  ,d, ;  is an integer Setween 0 


and 2n - 2: 7; is an integer between 1 and 2n - 1;the grid points x ,+~  x , + ~ ,..., 

xZr are defined from xo, x i ,  . ..,x,; and (t*, t*) may be either (te, tc), 


(t:, t-), (tf, t:), (tl,t;) depending upon the vallies Ef: mod 271, E; mod 27. The 


logical structure of (13)and the determination of the above parameters is too 

.,. 

lengthy to be given here but is presented in Appendix for completeness. It m u s t  

be emphasized that (13) is general for al l  computations, but is valid only while 

x is assumed constant, where1Jj)-a new fit is obtained and nciv constants are 

determined to integrate (4)by the general form (9). 

Usfng these results w e  can now solve the density expression for the value 

of b within each of the selected o r  fitted intergals from the expression 

where the subscripts U and L still refer to tfie upper and lower points of an 

interval. For example, .2L is that value of density at the initial point of the 

interval which is known from the tables, and the corresponding density scale 

height H, can then be computed. The end point ru is known as a function of E, 

Therefore % is also 'advanced' in a similar fashion as p,, during the fitting 

of the exponential. The above method of fitting King-Hele's expression over 

several intervals of an orbit is sufficient t o  'reproduce' the tabular model 

atmosphere with a discrepancy of less  than t ~ opercent, and simultaneously 

yield closed form integrable.equations for the variation of the elements. 

- -

I 

I 

! 

I 
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Table I provides a compilation of an estimated verslis a standard r.gdel 

atmosphere. The  estimated densities oiven in column 3 uvereobtained via equa­

tion (7). The standard model atm0:jphcI-e given in column 2 was obtained by 

using an algorithm which generated as closely as possible specific tables given 

in Reference 7. The standard nivdel atmosphere used here  closely resembles 

the Spring-Fall model with a n  Exospheric Temperature of 1100" Kelvin. The 

first column of the table is given in kilometers, and the remaining three col­

umns art? given in grams per cubic kilometer. 
I 

IV. SOLUTION OF VARIATIOXAL EQUATIONS 

In light of the analysis done in Section III above, we now return to the vari­

ational equations (4). If w e  now combine the radical terms in (41, we obtain a 

set of expressions containing the forms (1SX)" ,and (1f x)-" ,where n = 1/2 

and x = e2 cos2 E. If one assumes that x will never get too large, that. is, for 

drag satellites, e will not be larger than 0.2, then the above te rms  can be ex­

pand& as 

and 

(1 * x)-" = 1 T nx + n(n 
2 
+ 1) 2. ' (10) 

Adopting exqxession (6) for atmospheric density variation, the variational equa­

tions are then reduced to solving a set of indof-bite integrals of the form 

. . .  
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where k i  is  simply the c.onsLar?tcoefficient of eacii corresponding integral .  If, 

on the other hand, the eccentricity is soinewhat t i rge r  than normal, s a y  around 

0.5 o r  so, then i t  will be necessary to incluc'e several more terms i n  the expan­

sion (lo)above. This however is aa algebraic problem, and cornputationally 

speaking has only the effect of changing the overall coefficients, { k i }  , in the 

final algorithm. The integrals are still of the form (11)above. Utilizing the 

fitting described in section II, the exponential of the density can now be repre­

sented as 

b,(E) exp  [b,(E) - El 

in which b, (E) and b, (E) are determined for one or several sew,onts within an 

orbital revolution. Results indicate that b, (E) and b, (E) remain fixed for a 

considerable length of the satellite's lifetime. Refitting becomes necessary only 

when a and e change apprecfably. This is found to occlir more frequently near 

the end of the srLellite's lifetime. hi any event, the fitting procedure is instan­

taneous, and the calculation proceeds without interruption. 

If in the drag acceleration one desires to express the density exponential 

so as to involve the product of J, ,the coefficient of the Earth's second. Z O M ~  

harmonic and the air density, one can follow the procedure of Sherrill (Refer­

ence 3) and write this term as 

where c2 = J, R:. H e r e  Re is the value of the Earth's equatorial radiu6, g,is 

tho equatorial radius of the oblate spheroid which passes t hough  the initial 

perigee point of the satellite, and the flattening E = 1/298. Since th is  addition 

, .. ­ r . . . .  
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is accounted for rather simply by the fitting procedure, the c ross  term is re­

tained in the,exponential. Using these results, equation (11) is rewritten as 

b,(E) f" exptb,(E)-E] cos4 E . s i n P  EdE. 

Here p takes the values 0 ,  1,and 2. When p = 0 ,  4 takes on all values from 

zero I?;;-ough twelve. When p = 1, 8 goes from zero through eleven; and when 

p = 2, 4 ranges from zero  through ten. For the case p = 0 ,  expression (12) re­

duces to 

9 4I.,"= b,(E) exp[b,(E)*E] COS E dE . 
' E1 

When P, is even ( P, = b),this becomes 

t 1 3  

b,(E) cos (2n- 2 j ) E  + (2n- 2 j )  s in (2h  - 2 
t 2exp[bz(E).E] (2,,)! --_­

j L O  bi(E) t (2n - 2j)' 

When 9, is odd (Z= 2n+l) we have 

[bz(E) c o s ( 2 n  - 2 j  + 1)  E t (2n - 2 j  t 1) s i n ( 2 n  - 2 j  + 1) 
X 

bi(E) i(2n - 2 j  + I), 

IIIII II I1 I1 I 
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, . 

For p = 2 expression (12;becomes 

I;”= hl(E) esp[b,(E)-E! c 0 8  E sin2 EdE 

9The calculation here i s  identical to that for Iou,with results given by equations 

(13) and (14)for X even and odd. 

Finally, for p = 1, we have from (12) 

cE2e = b,(E) exp[b2(E).E] c o s  E s i n  EdE. . 

An integration by parts reduces this to 

+ 4)4 + 1  l2exp!b2(E)-E] E d 4  . 

4Here again, the integral part of I is given by equations (13) and (14) for the cases 

that (?. + 1) i s  even or odd. Let us now define the following: 

K~ = b,(E) pL(I + b(L. V) a2e2 cos2 EL) 
YI = - 2 9  cos 

5 = b,(E) pL b(L, U) a2e2 

C :  = 0. C: = 0, C: = I ,  C: IT 2 e ,  

I . . . .. .  _.I. . r . L .  . ,. - . .. ; 



IJ I 11111 I I l l  I 111111111 ~~~ ~­

25 


and 

1-. .  C;I = 0, C i I  = 0, c y  = 1, cy = 0. 

! 
\;'.. 

1;. 
and 


G 

c"' = 
i 3  0; 

and 

c;v= 0, c:'= 0, c y =  1, ciV= e ,  

and 


i 
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and 


Also, 

.c=0 

.p,= 1 

5=0 

S=0 

.i_­

.c=0 

2=0 

. . .  I .  

I .  . 



I . 




2& 

n e  = - -1 C,As- [2(1 - c 2 )  I, - d ( 2 ( l  - e') I , ,
2 m 

+ 2c'"l, - e(1, i I , ) )  

-. .  

x (I, - e l l z )- (1 - e') s i n  p ,  cos /j,I13 

isin p2 cos p2(1, - 21,) + c2 s i n  p2 c o s  3' 1, 

- d((1 - e2) ' / 2  cos 2,E2?,, - (1  - e 2 )  s i n  ,E, cos P2Il6 

i 
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1 CDAa 
= --- -- c-’( l  - .2).-”2 :2(1 - 2 )(I3 - d I , )

2 m 

+ d((c2 - 2) I ,*  + CI,) - t P ( ( c 2  - 2)  I , ,  

and 


i 
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 v. RESULTS 

In order to test the BMW theory, two heavy air drag satellites with some­

what dissimilar characteristics arc considered. These are the Italian San 

hmco-2 and the U.S. Air Force Cannonball (OAR-901). Data on these spacecrafts 

is as fOllowE: 

san m c o - 2 :  

Mass m = 129.27383 kgm. 

Projected Area A = 3425.3397 cm2. 

Drag Coefficient CD = 2.1 

I 

i
I 
I 

I 


,
I 


I ’  
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Initial epoch: April 26, 1.967,10 hours, 12 inhutes. 

Initial conditions (Inertial Carteslanj: 

x = +0.58725272, j ,  = -0.a2890608 

y = +0.84923499, = ~0.56396878 

z = -0.05068531, i = +0.01219124 

Here, x, y, and z are in units of earth radii (6378.166 kilometers), and A, $, and 

k in units of earth radii per canonicai unit of ti.cnc?(806.812 seconds). 

Apogee height = 736.00 kilometers 

Perigee height = 205.60 kilo;nr.t.ers 

Eccentricity = 0.0387 

Inciination = 2.87 degrees. 

Cannonlsall: 

Mass m = 362.87392 kgm. 

Projectad Area A = 3423.6195 em'. 

Drag Coefficiw* CV = 2.1 


Initial Epoch: August 7,1971, 0 hours, 20 minutes. 


Initial Conditions (Inertial Cartesian): 


x = -0.9428339, = -0.26977565 

y = -0.28161S29, = -0.40945775 

z = i0.28038380, b = -1.0092100 

'Apogee height = 1957.20 kilome+&rs 

Pezigae height = 130.16 kilonretsra 

. .  
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Eccentricity = 0.1230 

Inclination = 92.00 degrees. 

In both cases, the boundary values of the atmospheric density profile 

given by pL are taken from a staiic model, namely, the 1966 U. S. Standard 

A i r  Force Supplements. The profiles used here include a Spring-Fall 

model with an 1100 degree exospheric temperature, a Winter, SO0 degree 

model, and a Summer 1000 degree model. While these profiles a r e  

adequate if chosen carefully, it is felt that a somewhat more sophisticated and 

dynamic "le1 such a8 given by Jacchia (Reference 8) would not only improve 

results but also make them more reliable. 

F i y r e  1, shows the variatiou over one orbital period (from time of in­

sertion) of the semi -mjo r  axis, eccentricity, and (9 2 + b3) respectively for 

San Marco-2. Here, a, and eo are taken to be the initial values of these 

parameters. For the semi major axis, wa have initially a secular decrease of 

108 parts in 106 per revolution, with a periodic variation superimposed, of about 

25 parts in 1 0  with the orbital period. The eccentricity shows a secular de­

crease of approximately 97 parts in 1.0' per  revolution, a n ~ ~a periodic vaiatlon 

superimposed on it with an amplitude of about 22 x with the orbital period. 

Figure 1 shows that ( f i ,  + p 3  ) shifts back and forth l-y nrt 8.8 seconds. Ffguro 2 

is 8 similar graph for Cannonball. It is seen tk t  the variations for a and e 

here are somewht  larger than for San Marco-2 xh3.le the shift of + p 3 )  is 

considerably less. This behavior is what one would e q % &  considering the dif­

ferences in the orbits. 



- -  

32 

Figures 3 and 4 are graphs of semi-major axis versus time (days froni In­

sertion), for San h-larco-2 and Cannonball during an actaal lifetime study for the 

two satellites. The circles are those values of a, predicted by the RMW theory 

using only the initial conditions given above, while the crnsses  indicate those 

arcs  of data SV.pplif3d by orbit improvement routines utilizing tracking or ob­

servational data to update the orbital elements. The orbital improvements were 

necessitakd by the rapid doterioration of t:?e orbital parameter qua l ie  due to  

inaccurate force modeling (partimlarly air resistance accelerations) in the 

equatiocs of motion. Tlie accepted date of re-entry into the earth's atmosphere 

for San XTarco-2 was on October 14,19G7 at approxiniately 13 hours. Thus, the 

total lifetime was about 171  days. The BA%?program computed a Wetime of 

165 days, for a re-entry on October 8,1967. Cannonball's re-entry date w a ~  

approximately January 28, 1972,a lifetime of about 173 days. BMW computed 

170 days. In these two cases, the program evaluated the limits of t?ievariational 

equations �or values of the eccentric anomaly corresponding to  five day intervals. 

This was done so as to d low the BMW program to compare at htermedldte 

points, its values for semi-major axis with the observed oms. En actual prac­

tice, these limits would be svduated for those values of eccentric anomaly 

corresponding to  those regions of an orbit  over which a f i t  of the ilensity variation 

remained fixed. Using a change in perigc-o height criterion {preselected at 1 kin), 

results from Cannonball show t h a t  the first reg im is the first 65 days, the 

second is the next 55 days, and so OD, until within the last month of lifo the regions 

.. .... . . . .  
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are only of 5 day durations. As axesult, the entire ephemerik Is computed 

rapidly. U s h g  the IBM 360/91 electronic digital computer, the complete San 

hlarco-2 and C a n n o d d l  ephemerides computed at 5 day interv-1s were exe­

cuted in less th% 18 seconds of computer CPU time. 

These results show that the .BkllV program was within 4 percent of the 

"truettlifetimes of both satellites, despite the fact that Cannonha4 had a re­

latively high eccentricity and low perigee,. In addition, it must be pointed out 

that the initial co:?ditions used in the  program were obtained from orbit im­

provement routines other than t h e  Vintj Orbit Determination System, since this 

was t h e  only data ava.ilablc. T o  be more consistent, and to  improve accuracy. 

one shouId utilize, if possible, onIy those initial or epoch values obtained from 

the Vinti Orbit Determination System (Reference 9, 10). 

In spite of the startling success with San Marco-2 and Cannonball. improve­

ments to the present BMW computer program are being conaidered. Pr ime 

m o n g  tliese 53 the hcorporation of a dynamic model atmospheric density pro­

file suchas Jacchia's. As is well known 2 slight miscalculation in the exospheric 

temperature for a statjc model Would clrastlcally zlter the rusul%inngdensity 

profile, and consequently, the computed ephemeris of the satellite. 

The distinct advantage of the BMPI method over numerical integration tech­

niques is that being analytic or closed form, it is not subject to large e r r o r  

accumuLat5on clue to roundoff and hucation. In addition, an entire ephemeris 

can he obtahed in a matter of a few seconds on present gemration computers, 

whi1.e such a task might be prohibitive with a nlzmerical integraticn. 

_ _  
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With the atmospheric profile gii en by (5), expression (11)with p = 0 could 

be expressed in terns of Bessel functions; for emmple,  

1 1exp ( c  C O S  E) cos" EdE = J0(c) (n = 0)
71 

= .T,(C) (n = 1) 

and so forth. The disadvantage here, besides the limited step size over which 

to perform the summation, is in t'ne difficulty of handling 'hterrnediate points 

within the limits. A B s a e l  fuuction approach w d d  appear to be better em­

ployed in a study of atmospheric density inference from calculation8 of the 

period decrement. 

King-Hele (Reference 6 )  has studied the contraction of orbits in a closed 

form manner. Four situations are considered: 

1. Normal e, Phase 1: approx. 0.02 <e<0.2 (3< (ae/Hp) < 30 approx.) 

2. N o d  e, Phase 2: O<e<0.02approx. (0 < (ae/H,-) i3) 

3. C i r c u l a  orbits: e = 0 (ae/H, = 0). 

4. Hfgh eccentricity: e l  0.2 (ae/Hp 1. 30 appmx.). 

It is felt that the regions covered by the squations of motion in these four ca8e8 

are also covered by the BIW theory. Even though a static model atmosphere 
profile wa8 used in the cdlculation~,BMW does have the latitude of utclizing a 

. . . .  . \ . . .  
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density profile such 8%the Jacchia model. In addition, the zaforence orbit is 

not an exact ellipse,,but the Vinti  orbit. A s  a res&, I t  is felt t k t  the BMW 

method has contributed to  the program for calculating both accurately and rapidly, 

the orbits of satellites experiencing aerodynamic drag. 

At the present time, the Vinti differential correction algorithm (Reference 10) 

employing a classical weighted least squares technique is being appropriately 

modified to acconimodate the augmented force model. The bulk of the implc­

mentation requires the reformulation of the partial derivatives {ay, h?q (to)) 

to reflect air drag where {y ,}  are trac’rdng ohservables and {qj( to)}are the 

set of llepochtfVinti orbital elements and an atmospheric parameter iteratively 

estimated by the differential correction technique. It.appe?-rs that complete 

analyticity can be retained for these partial  derivative expressions, thuz merging 

the theoretical developments presented here wiih the practical application of 

orbit estimation. This work will be forthcoming 31a future report. 
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TABLE I 


.A 

. 

.. . ._ . , .. .. ... . 

- .  _ _  
Helght Static ATM Demlty __ 

0 . 2 0 5 0 ~ 0 0 0 003 0.301060802633D 03 0.701060802633D 03 

0.206000000DOOD 0% 0292581857391D 03 0.292581057391D 03 

0.207000000000D 03 0.284373YQ5477D 33 0.284373956992D 03 

0.208000000000D 03 0.276427541284D 03 0.27642'754ZZMD 03 

0.209GWO00000D 03 0.268733I99909D 03 0 . 2 6 t 7 3 3 i z a m ~  03 

0.210000000000D 03 0.2612CZ0408051) 03 0.261281908415D 03 

0.2110000000M)D 03 0.254065482185D 03 0.254065482185D 03 

0.212000000000D 03 0.247075276 l6lD 03 0.217075072937D 03 

0.21300000000oD 03 0.240303491560D 03 0.2403W827238D 03 

0.214000000W~D03 0.233742515394D 03 0.2337ClS17168D 03 

0.2150OOO000WD 03 0.227385009955D 03 0.227383373171D 03 

0.2160&30M)OOOD 03. 0.22122393MWD 03 0.2212~2099643D 03 

0.217000000000D 03 0.2152524W448D 03 0.215250815844D 03 

0.218000OWOOCD 03 0.209464193246D 03 0.209463097141D 03 

0.219OC4K300000D 03 0.203852741559D 03 0.20385274155~~ 03 

0.220000000000D 03 ~0.198412107074Il 03 0.198417301338D 03 

0.22100WOOOOOD 03 0.19313648071 9D 03 0.193156793127D 03 

0.222OOOOOMWD 03 0.1880202313191) 03 O.ltI80�494578ZD 03 

0.225ooo000000D 03 0.183958096872D 03 0.183155719948D 03 

0.2ZSOOOONKWD 03 0.156212635528D 03 0.1565&1335715D 03 

0 . 2 3 3 o o o O ~03 0.1416118Eo377D 03 0.1415G8571587Zl 03 

0.2370003WMKiD C 3  6.128303346660D 03 0.12B303940860D 03 

0.24-D 03 0.105648314722D 03 0.105642771 6380 03 

0.250900OCY)OOOD 03 0.93758631073eD 02 0.037487761412B 02 

0.270000000000D 03 0.590301268805D CZ 0.590233812922D 02 

0.Z790OOOM)OOOD 03 0.5829023235170 02 0.4523f302OW3D 02 

0.285003MW)OOOD 03 0.423415114719D 02 0.423456469834n 02 

0.29900000oooOD 03 0.313821645@75P02 0.314306093484D 02 

0.342oooO00000D 09 0.154720G11316D 02 0.13471ms807~ oa 

0 . I l O C W O ~ DOS 0.30887153943OD 01 0.4OBf49712729D 01 

0.4800000000WD 03 0.129181693901D 01 0.12915955.(315D 01 

0.550000[)000(MD 03 0.4494732869440 GO 0.4534502312641> 00 

0.650OOCOOOOOOD 03 a.lJ2075750808D 00 0.112756896810D 00 

37 

DIFL: 

0.0 

0.1 13686637722D-12 

0.3648452348GZD-04 

0.113686837722D- 12 

0.701411933051D-04 

0.134389794596D-03 

0.213162820728D-13 

0.203224049809D-03 

0.66732 1502U70D-03 

P.119822619084D-02 

0,163178351055D-02 

0.1830847423850-02 

0.168260392789D-02 

0.109610524396J3-02 

0.2486899575:BD- 13 

-0.5 19426438754D-02 

-030312408228613-01 

-0.446744726403D-01 

-0.776232757051D-01 

-0.421702188040D 00 

0.53187805f.08ID-02 

0.28U17094304D-13 

0.554308315I59U-02 

O.QeM93260362D-02 

0.6m5sm33e080-02 

0.530257381655D-03 

-0.413552152309D-02 

-0.4844476093291~-01 

0.7851508M548D-03 

-O.95781732aS4DD-01 

0.22139665l137O03 

-0.397701031MlD-02 

-0.681146001 936D-03 
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Figure.5 i  BMW ComputationalAlgorithm for Drag-Oblateness Interaction 
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Figure A-1 (aontinued) 
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I 	 ARRAY (1,l)  =ARRAY (J,1) 

ARRAY (1,2) = ARWY (J,2) 

ARRAY (1,3) = ARRAY (.!,3)
4 ARRAY (I,4) = ARRAY !J,.C) 

ARRAY 11,s) = ARRAY (J,5) 


-I 1
I t 
i = l + l 


I 

1 

I
I
1 


NOlNn'= I - 1


I
I 


i 

I 
I 

I 
1 
I 

I 

I 

I 

I 

I 

t 
I 

I 

I 

I 

I 


, . .  . . 



.?­

47 

id
APPENDIX 

DEVELOPMENT OF VANATIONAL EQUATIOII CONSTANTS 

For k.= 1, 2, ....6; the general expression for the change in the Vinti 

orbital elements due to atmospheric drag between 'he  arbitrary limits E;, E: is 

given by: 

. , .. '.. . . . . . . .  - .. ,. :: , : -' !,., . * :  ' <  , I , . .  . ,, ' 

X '  . ' 

. . +J: t*, exp Id*, E] 
, .  

. .. .  dG, (E) . . . .  - ,  I .. . I .  . . . . . . . . .. . . . . .E, mod 2­

. . . . . . . . . . . . . . . . . . . .  : . ,  ..;: ~. . .  : ; , ,  .. . . . . ,  . .  .., , . .  1. _  .. , . , . . :  . . . .  
Wfthorlt ioss of generality, kssume t'htthe f:tting process is performed over 

.. , ,  . 4 . 
. . . 

the interval [ d , n l  Le. . . .  . .  . I - . * .  , . ; \ ' , . . \ I .  , '  , ... 

o,= x o  < X I  < x 2  < * - .  < Xnw1 < x n  =,v, 
. . . .  . . .  . .  ,. . . .  . . . .  : . . . . .  ! I  . 

I . i . .the coefficients t x  are expressed by 
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where c& is a previously defined fitted parameter in the lnterval I c k ~ ~ ,xt l  

4 = 1,2, ...n; x = ae. From symmetry considerations define 

(A-3) 	 ,
I 

. 

i
1 
1 
I(A-4) 

whero dp,is the other previously defined, subintervaldependent, fitted parameter. 

The remainder of this appendix shows the procedure utilized to derive the 

values of the non negative integer multiplicity factors m 4  mn+$ 4 = 1.2, ...n; , 

the value cf ,an integer between 0, 2n - 2; the value oi 71, an integer ktwmn 

1, 2x1- 1; and (ti,t;) which may be (tc, $1, (ti, t,,), (tE,th), or (t;, ti) depending 

upon whether E: mod 2 7 7  and 6: mod 2n are less than or oq!!al to or greater 

than n ,  for arbitrary E:, E: end for differant modes of operetion of the orbit . 

i 
i 	 . . . .  . . . .  . . . - .. .  
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program. Prior  to defhing this procedure, consider the follcwing definitions 

concerning {A) modes of operation of the VinH orbit generator program, (13) 

integration intervals of the variational equations, and (C)Fortran variable 

definitione. 

Mode I 


The Vinti orbit generator program is operating in mode I when the time 


span of the variational equation hbgra t ion  [or implicitly, the integration 


interval (ET,E,*)] i s  sufficiently small so that there is not a cozplete iitting 


subhterval imbedded between the integration limits. Mod3 I will be the 


doninant mode for definitive ephemerides or an ephemeris computed -loaqport 


a differential correction. 


Mode II 


The Vinti orbit generator is operating in mode IIwhen tho time span of 


variational integration has one o r  more imbedded fitting s u b b b r v a l s  be­

2. 


tween the limits cf variatianal equation integration. This mode w i l l  be 


utilized Isl lifetime studios when large Lntomds of ht3gration wi l l  bo per­


formed. ibte that mode II impliee the assumption of a valid fit (or x = 


ae constant)over large perids of time thandoes mode I where new fits will 


be performed 88 frequently a8 is required. 


Class I hbmal 


A class I interval is an interval such that both h d a r y  pohb ere adjscent 


grid points of the mesh x,,. x .. x . 

..P 



-- 

--- 

.50 


Class 11 Interval 

A class 11 interval is an interval such that one boundary point of the hterval 

is a point x , of the mesh x o, x ...,x, while the other boundary poht is a 

non mesh point between 

x j  a n d x j t l .  

(C) Fortran Variable Definitiox?? 

~-Fortran Variables Mathematical Description 

, El ": 
E2 Ef 

NOINTV 2n 

NOINTV 
+ I  c 1  t o c n  

2 

I I = 2.  NO **NTV+ 1
2 

J = 3 { I  = I .  NOINTV + 1 
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. .  

.ARRAY (I, J) 

ET mod 277 

X R  


O o r  1 

* 
t R  


d* 1) 

I = 2  . 

I = 3,NOINTV 

' . .  

J = 3  m n + Z  

I =  
2 

+ 2 ,  NOINTV + 2 

J =  5 d,+.e 

. . 
. . , 1 :: . . I .:.. .... . .... , '. , . .  ~ . 

. 
, 

. 
. 

b . . 

I 
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The following describes the subtasks associated with defhing the full set of 

integration parameters in (A-1). The detailed logic is presented iu the flow­

chart given in Figure A-3. 

@ This algorithm will test whether E: and E: are wit& the Sam0 sub­

interval, will store the proper interval of integration and associated constants 

into AFtRAY, and exit. This simplified logic is most useful in Mode I orbit 

generations. 


@ This algorithm defines the Class II htervals associated with t h e  arbi­

trary limits ET, E:, (i.e. [x,,E;mcdZn] and [E;niod 2 7 7 ,  x,,]) and stores them 

ard the assockted c0ustant.s into ARRAY. 

@ This algorithm checks to see if aay of the ClassII i c t e r v d s  are near 

v i 2  o r  3 n/2 in order to avoid underflow difficulties during evaluation of the 

integrals. 

@ To assist the task of deleting unnecessary computations in Mode I gen­

erations, this algorithm establishe6 the necessary intervals and associated con­

stanfs when ET and E: are in d j a c s n t  subintervals and in the same inultiple 

. .of 2n. 


@ This logic stores the entire set of C k s s I  subintervals and associated 

constants into ARRAY and checks the ChssII subintervals fa2 negligible length. 

If m c h  a Class I1 interval.is found, it is el*r,,katcd fkam consideration. An 

arbitrary intcmaI len,nth of 1 x IC-'is the criterion presently us&. 

'i 

t 

i 

i 
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. .  This a-lgorith defines m,+ in +.e , It is predomimntly used in Mode II 
I 

i orbit generations. 

i 0.This algorithm redefmes ARRAY to e l f m W e  CIassI intervals with a 
? I 

multiplicity factor ofzero 2nd ClassII intervals whose multiplicity factor 1­

i '  been reset from one to zero by @J whsn its lengtin i8 negligibh. 

5 
C 

t; 

. .  

. ­
. .  

' .-,. 
. j . .  . .  

I ( .  . . . . - . . , . .  . . .. . .  . . . . .. . . . 2 




